Privacy-Preserving Collaborative Information Sharing through Federated Learning – A Case of the Insurance Industry

Panyi Dong ARC 2023, Jul. 31, 2023

Acknowledgement

- Intel Labs
- Discovery Partners Institute, University of Illinois

- Shih-han Wang
- Brandon Edwards
- Micah Sheller
- Wells Lee
- Patrick Foley
- Nageen Himayat
- Parviz Peiravi
- Jason Martin

- Tianyang Wang
- Marc Goodman
- Renu Kulkarni

- Panyi Dong
- Zhiyu Quan
- Runhuan Feng

Synopsis

Challenges in the insurance industry

How Federated Learning (FL) can help

Key insights from real-life empirical experiments

Problems

- Academic literature shows that ML collaboration has proven beneficial
 - ML algorithms for better
 - Loss models, reserving, fraud detection, investment decisions, etc.
 - Industry-level insights
 - Regulators
 - Align common interests
- Data sharing with other companies is practically near impossible
 - Data security standards
 - Insurance Data Security Model Law (NAIC)
 - Growing attention in cyber-security
 - Infrastructures
 - Business concern
 - Proprietary information

Problems

- Insurance companies are in the local mode
 - Rarely observe industry collaborations
- ML collaboration + privacypreserving solution is in demand
 - Federated Learning (FL) can fill in the gap
 - Real-life applications can be lucrative with high ROI if feasible

Insurance use cases for FL

- Claim Loss Modeling
 - Address Data Shortage
 - The focus of our paper
- Fraud Detection
 - Cross-industry collaboration to solve industry pain points
 - Extend to problems like money laundering
 - Bank
- Catastrophe Modeling
 - Reinsurance company
 - Climate risk modeling

FL for Claim Loss Modeling

Claim Loss Modeling

- Learn from historical claim events
- An imbalanced supervised regression task

Problems Shortage in Data

- Insurance companies collect conventional information from policyholders
 - Private personal information
 - Names
 - Addresses
 - Credits
 - Private business information
 - Sales records
 - Annual revenue
 - Properties
- But still in shortage of (the focus of our work)
 - Data volume
 - Data variety

- Claim loss events have rare occurrences (imbalance nature)
 - Less than 10% in practice (extreme as 0.1%)
 - Car accidents
 - Rare diseases
 - Individual insurance companies lack sufficient loss events
 - Depends on the market share
 - New to the line of business/Step into new regions
- More prominent the data volume, the more claim loss events to learn from
 - Better insurance loss model

Solutions HFL

- To address the Shortage of Data Volume
 - Horizontal Federated Learning (HFL) as a solution
- HFL,
 - Learn industry-level insights
 - Simulate the centralized training utilizing all datasets from collaborators
 - By iterative local training and model aggregation
- In business,
 - Multiple insurance companies collaborate on the same line of business
 - Single company presents heterogeneous groups of policyholders The centralized model can learn from all claim loss events

Problems Data Variety

- Every insurer is chasing the perfect feature set
 - 100% accurately map risk factors (features) to risks
 - A challenge to the entire insurance industry
- However,
 - The risks may come from multiple external sources
 - Social media
 - Telematics
 - US census data
 - Insurance companies by themselves can't get their hands on everything
- A cross-industry partnership may be a solution
 - Insurance-InsurTech
 - Insurance-Banking
 - Insurance-Government

Solutions VFL

- To address the Shortage of Data Variety
 - Vertical Federated Learning (VFL) as a solution
- VFL,
 - Learn cross-industry insights
- In business,
 - Multiple companies from different industries
 - Same group of policyholders
 - Expand the feature space

Data & Experiments

Experiments

- Real-life Datasets
 - Two Insurance companies
 - Insurance features + Insurance labels
 - One InsurTech company
 - InsurTech features
- Learning task
 - Insurance claim loss modeling
 - Regression
- Experiment framework: OpenFL
 - Open-source FL framework by Intel Labs
 - FNN as model architecture

Two Insurance companies (A/B)

Company	Α	В
Product Coverage	Liability in Business Owners' Policy (BOP) products	General Liability products
Data Size	392,726 policies	210,857 policies
	26 features	39 features

- Features (limited policy information)
 Coverage Limit

 - Exposure
 - Category of business

Datasets InsurTech

InsurTech datasets

- Consists of hundreds of features from multiple data sources
- Covering policyholders of both insurance company A/B
- Aligned for each policy

Data Size

- For Company A
 - 555 features
 - 392,726 policies
- For Company B
 - 555 features
 - **210,857 policies**
- 555 features are the same

Experiments HFL

Two-collaborator HFL

- Common line of the business -Liability products
- FedAvg

Enables

- Protection against raw data leakage
- Collaboration among insurance companies
- Improvement in insurance models

- Algorithm: FedAvg
 - Earliest FL algorithm
 - Iterative local training + central model aggregation
 - same local training
 - central takes the average of models

$$f_{central} = \frac{f_1 + f_2}{2}$$

The consensus model inhere the global insights

Performance HFL

Collaborator	Split	Mode	PE
A	Train*	Local	-0.16
		HFL	-0.07
	Test	Local	-0.18
		HFL	-0.09
В	Train	Local	0.22
		HFL	0.13
	Test	Local	0.23
		HFL	0.16

Performance metrics of HFL by Percentage Error $PE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{\sum_{i} (y_i - \hat{y}_i)}{\sum_{i} y_i}$

^{*} To ensure robustness and reliable model performance, the training process was conducted using 10-fold cross-validation with random sampling.

Experiments VFL

Two-collaborator VFL

- Insurance-InsurTech
- Liability products
- SplitNN

Enables

- Protection against raw data leakage
- Collaboration for cross-industry
- Comprehensive insights

Experiments VFL

- Algorithm: Split Neural Network (SplitNN)
 - Split one NN into multiple segments
 - Easy incorporation into NNs
 - Differentiate collaborators by roles
 - Feature collaborator has only features
 - Label collaborator provides labels
 - Forward/Backward propagation
 - Feature collaborator forwards raw data to unidentifiable embeddings
 - Label collaborator forwards all embeddings to predictions
 - Backward propagation inverses sequentially

Collaborator	Split	Mode	PE
A	Train	Local	-0.16
	Train	VFL	0.07
	Test	Local	-0.18
		VFL	0.04
В	Train	Local	0.22
		VFL	0.12
	Test	Local	0.23
		VFL	0.16

Performance metrics of VFL by Percentage Error $PE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{\sum_{i} (y_i - \hat{y}_i)}{\sum_{i} y_i}$

Conclusion

- Identify potential real-world use cases
 - Solving data shortages in loss modeling
- Propose Federated Learning as a solution
 - HFL for the increase in data volume
 - VFL for the increase in data variety
- Experiments have demonstrated improved insurance claim loss models
 - Better portfolio predictions
 - More efficient risk management

Thank you! Q&A

UNIVERSITY OF ILLINOIS
URBANA-CHAMPAIGN

Appendix

Insurance in short

Insurance is

- Data-driven industry

 - Natural for Machine Learning (ML) innovations
 Many informed business decisions rely on data
- Offers protection against various risks
 - It requires massive data to assess and manage the underlying risk
 - Abundant partnership opportunities, e.g., external data vendors
- Overlapping business lines and target segments
 - Collaboration becomes rational and necessary
 - Operational efficiency and cost optimization

Insurance in short

- Insurance industry is highly-regulated
 - Regulators oversee insurance industry: solvency and fairness
 - Increasing data privacy concerns and regulatory requirements
- Insurance companies are risk-averse
 - Prioritizing stability and minimizing uncertainties
 - Technical advancements bring risk-mitigation and competitive advantage
 - Business insights and value propositions
 - Success stories!

Horizontal Partition

Datasets InsurTech

InsurTech

- Tailored technology-enabled innovations for the insurance industry
- Integrated with the entire value chain of every business lines
 - Marketing, Underwriting, Claim management
 - Property & Casualty, Life & Health

Industry examples

- Mobile devices with apps
 - Reporting claims, customer service
- Wearable technology
 - Telematics, health tracking
- Internet-enhanced features
 - Real-time, dynamic information from emerging public data sources
 - Characterize operations, products, services, etc.

Allstate, Commercial lines, Year 2022

Earned Premium	\$919 M		
Loss ratio	120.7%		
Claims (expenses)	\$1,109 M		
PE	20.7%		
	Through HFL	Through VFL	
Relative improvement in PE (in experiments)	44.4%	52.5%	
Average improvement in PE	9.2% 10.9%		
Improvement in Dollars	\$84 M	\$100 M	

Allstate, Commercial lines, Same Calculation, earlier years

Year	Earned Premium	Loss Ratio	Improvement in Dollar	
			Through HFL	Through VFL
2021	\$827 M	97.5%	\$9 M	\$11 M
2020	\$767 M	82.4%	\$60 M	\$71 M
2019	\$882 M	81.3%	\$73 M	\$87 M
2018	\$655 M	91.3%	\$25 M	\$30 M

More Potentials

Allstate, Earned Premiums in 2022

■ Auto: \$25,286 M

■ Homeowners: \$ 9,249 M

■ Personal: \$ 2,016 M

■ Commercial: \$ 919 M

Solve problems from source

- Better underwriting, pricing, claim management
- Further improvement

Future

Future

- Adoption of insurance friendly algorithms
 - ĞLM
 - Tree-based models
- Explainability/Interpretability in the context of FL
 - Business insights for insurance companies
 - Future trends for regulators
- Explore more use cases
 - Fraud Detection
 - Catastrophe Modeling
- Enhancement of privacy protection tailored for insurance or Protection of features

 - Differential Privacy (DP)
 - Trusted Execution Environment (TEE)

I

IRisk Lab projects in parallel

- Customers may switch coverages among different insurance companies
 - May interfere with models
 - Deeper analysis is needed
- "Weird" privacy concerns may come up
 - Feature names > All raw values
 - Sharing feature engineering means expose business strategy
 - Seeking for more secure solutions
 - Not willing to share even parameters
 - 0 ...
- Those problems has been studied as a project at IRisk Lab at UIUC
 - Try to integrate insurance-specific solutions with FL