Automated Machine Learning (AutoML) in Insurance

Panyi Dong

University of Illinois Urbana-Champaign

2025-02-07

Synopsis

- Why we need AutoML
- What is our AutoML
- **How** our AutoML performs

Introduction: ML

- Machine Learning (ML) "leverages data to improve performance on some set of tasks".
- Real-life application scenarios :
 - Self-driving cars
 - Recommendation systems
 - Automated translation
 - o ...
- For insurance industry:
 - Future claim estimation
 - Fraud detection
 - Automated underwriting
 - o ...

Introduction: ML

- However, ML tasks can be
 - Experience-dependent
 - Heavy manual work
- By the **data-driven** nature of ML algorithms, selection of models and hyperparameters are critical, and **no universal solution** exists.
- Furthermore, industrial datasets add to the complexity
 - Not well-formatted or well-organized datasets
 - Missing values
 - Irrelevant features
 - Imbalance distributions
- It's difficult for those who have no previous experience/knowledge to gain hands-on experience.

- Automated Machine Learning (AutoML) is one of the solutions.
 - AutoML tries to
 - Automatically select a ML model
 - Automatically tune for optimal hyperparameters
 - "non-expert users" can apply ML to their application scenarios more effectively

- ullet A ML model M can be characterized by
 - \circ Parameters θ
 - \circ Hyperparameters λ
- The learning can be formulated as

$$\operatorname*{argmin}_{ heta} \mathcal{L}(M_{\lambda}^{ heta}(\mathbf{X}), \mathbf{y})$$

- \circ dataset $\mathcal{D} = (\mathbf{X}, \mathbf{y})$
- \circ loss function \mathcal{L}
- ullet The choice of model M and hyperparameter set λ is important

ullet Model selection finds optimal model architecture M^*

$$M^* = rgmin_{M \in \mathcal{M}} \mathbb{E}_{\mathcal{D} \sim (\mathcal{D}_{train}, \mathcal{D}_{valid})} \mathcal{V}(\mathcal{L}, M_{\lambda_0}, \mathcal{D})$$

ullet Hyperparameter Optimization (HPO) finds optimal hyperparameter set λ^{M*}

$$\lambda^{M*} = \operatorname*{argmin}_{\lambda^M \in \Lambda^M} \mathbb{E}_{\mathcal{D} \sim (\mathcal{D}_{train}, \mathcal{D}_{valid})} \mathcal{V}(\mathcal{L}, M_{\lambda^M}, \mathcal{D})$$

- ullet Objective function ${\cal V}$
 - \circ trains on train set \mathcal{D}_{train}
 - \circ returns evaluation loss on valid set \mathcal{D}_{valid}

- To combine, one option is two-step process
- Another is Combined Algorithm Selection and Hyperparameter optimization (CASH)

$$egin{aligned} M^*_{\lambda^*} &= rgmin_{M \in \mathcal{M}, \lambda^M \in \Lambda^M} \mathbb{E}_{\mathcal{D} \sim (\mathcal{D}_{train}, \mathcal{D}_{valid})} \mathcal{V}(\mathcal{L}, M_{\lambda^M}, \mathcal{D}) \ &= rgmin_{(M, \lambda^M) \in \mathcal{C}^M} \mathbb{E}_{\mathcal{D} \sim (\mathcal{D}_{train}, \mathcal{D}_{valid})} \mathcal{V}(\mathcal{L}, M_{\lambda^M}, \mathcal{D}) \end{aligned}$$

Our AutoML¹

- Complete, fully functional processing and model tuning
- Special treatment for Insurance imbalanced datasets
 - Data Balancing
 - Pipeline ensemble
- Record training process and store the optimal pipeline for continued applications

AutoML: Components

- 1. Data Encoding
- 2. Data Imputation
- 3. Data Balancing
- 4. Data Scaling
- 5. Feature Selection
- 6. Classification/Regression Models
- 7. Model Selection and Hyperparameter Optimization

Preprocessing

AutoML: Workflow

AutoML: Optimization

```
Algorithm 1: The AutoML optimization
    Input: Dataset \mathcal{D} = (\mathcal{D}_{train}, \mathcal{D}_{valid}); Search space \overline{\mathcal{U}}; Time budget T; Evaluation
                 budget G; Search algorithm Samp
    Output: Optimal pipline with hyperparameter settings \mathcal{P}^*
 1 \ k = 0;
                                                                                              /* Round of evaluation */
 2 t^{re} = T:
                                                                                           /* Remaining time budget */
 q^{re} = G;
                                                                                /* Remaining evaluation budget */
 4 while t^{re} > 0 and q^{re} > 0 do
 t^{start} = CurrentTime:
      (E^{(k)}, \lambda_E^{(k)}), (I^{(k)}, \lambda_I^{(k)}), (B^{(k)}, \lambda_R^{(k)}), (S^{(k)}, \lambda_S^{(k)}), (F^{(k)}, \lambda_F^{(k)}), (M^{(k)}, \lambda_M^{(k)}) = Samp^{(k)}(\mathcal{U});
         \mathcal{P}_{k} = M_{\lambda_{E}^{(k)}}^{(k)} \circ F_{\lambda_{E}^{(k)}}^{(k)} \circ S_{\lambda_{E}^{(k)}}^{(k)} \circ B_{\lambda_{E}^{(k)}}^{(k)} \circ I_{\lambda_{E}^{(k)}}^{(k)} \circ E_{\lambda_{E}^{(k)}}^{(k)};
        L^{eval,(k)} = \mathcal{V}(\mathcal{L}, \mathcal{P}_k, \mathcal{D});
 9 t^{end} = CurrentTime:
      k = k + 1:
     t^{re} = t^{re} - (t^{end} - t^{start});
         q^{re} = q^{re} - 1:
13 end
14 k^* = \operatorname{argmin} L^{eval,(k)};
                                                                               /* Find optimal pipeline order */
15 \mathcal{P}^* = \mathcal{P}_{k^*}:
16 return \mathcal{P}^*;
```

AutoML: Optimization

- To connect all components, we use ray.tune for model selection and hyperparameter optimization.
- ray.tune is a scalable Python package
 - to conduct experiments on hyperparameter tuning
 - compatible with common ML model structures
 - scikit-learn, TensorFlow, PyTorch, ...
 - o compatible with search algorithms like
 - Optuna, HyperOpt, ...

AutoML: Ensemble

- Model Ensemble is common solution to
 - Data imbalance
 - State-of-the-art performance
- We adopt three ensemble structures
 - Stacking
 - Fully parallel training on whole set
 - Bagging
 - Parallel training on subsets
 - Boosting
 - Sequential training on residuals

AutoML: Stacking Ensemble


```
Algorithm 2: The Stacking Ensemble
   Input: Dataset \mathcal{D} = (\mathcal{D}_{train}, \mathcal{D}_{valid}); Search space \mathcal{U}; Time budget T; Evaluation
               budget G; Search algorithm Samp; Size of the ensemble H
    Output: Ensemble \Sigma_H
 1 k = 0:
                                                                                   /* Round of evaluation */
 t^{re} = T:
                                                                               /* Remaining time budget */
 q^{re} = G;
                                                                     /* Remaining evaluation budget */
 4 while t^{re} > 0 and q^{re} > 0 do
       t^{start} = CurrentTime;
         (E^{(k)},\lambda_E^{(k)}),(I^{(k)},\lambda_I^{(k)}),(B^{(k)},\lambda_B^{(k)}),(S^{(k)},\lambda_S^{(k)}),(F^{(k)},\lambda_F^{(k)}),(M^{(k)},\lambda_M^{(k)}) = Samp^{(k)}(\mathcal{U});
         L^{eval,(k)} = \mathcal{V}(\mathcal{L}, \mathcal{P}_k, \mathcal{D});
         t^{end} = CurrentTime;
         t^{re} = t^{re} - (t^{end} - t^{start}):
13 end
14 \{P_{(k)}\} = sort(\{P_k\});
15 \Sigma_H = \Sigma_H(\mathcal{P}_{(1)}, \mathcal{P}_{(2)}, \dots, \mathcal{P}_{(H)});
16 return \Sigma_H:
```

AutoML: Bagging Ensemble


```
Algorithm 3: The Bagging Ensemble
     Input: Dataset \mathcal{D} = (\mathcal{D}_{train}, \mathcal{D}_{valid}); Search space \mathcal{U}; Time budget T; Evaluation
                    budget G; Search algorithm Samp; Size of the ensemble H; Subset Matrices
                   \{oldsymbol{
ho}^{(oldsymbol{h})}\}_{h=1,2,...,H}
     Output: Ensemble \Sigma_H
  1 for \hat{h} \leftarrow 1 to H do
        k = 0;
                                                                                                            /* Round of evaluation */
           t^{re} = T//H:
                                                                                                        /* Remaining time budget */
           q^{re} = G//H;
                                                                                          /* Remaining evaluation budget */
          \mathcal{D}^{(h)} = ((\mathbf{X}_{train}\boldsymbol{\rho}^{(h)}, \mathbf{y}_{train}), (\mathbf{X}_{valid}\boldsymbol{\rho}^{(h)}, \mathbf{y}_{valid}));
           while t^{re} > 0 and q^{re} > 0 do
                 t^{start} = CurrentTime;
                 (E^{(k)}, \lambda_E^{(k)}), (I^{(k)}, \lambda_I^{(k)}), (B^{(k)}, \lambda_B^{(k)}), (S^{(k)}, \lambda_S^{(k)}), (F^{(k)}, \lambda_F^{(k)}), (M^{(k)}, \lambda_M^{(k)}) =
                 \mathcal{P}_{h,k} = M_{\lambda_{i}^{(k)}}^{(k)} \circ F_{\lambda_{i}^{(k)}}^{(k)} \circ S_{\lambda_{i}^{(k)}}^{(k)} \circ B_{\lambda_{i}^{(k)}}^{(k)} \circ I_{\lambda_{i}^{(k)}}^{(k)} \circ E_{\lambda_{i}^{(k)}}^{(k)};
L^{eval,(k)} = \mathcal{V}(\mathcal{L}, \mathcal{P}_{h,k}, \mathcal{D}^{(h)});
                 t^{end} = CurrentTime;
                 t^{re} = t^{re} - (t^{end} - t^{start});
                 g^{re} = g^{re} - 1;
14
           end
           \{\mathcal{P}_{h,(k)}\} = sort(\{\mathcal{P}_{h,k}\});
17 end
18 \Sigma_H = \Sigma_H(\mathcal{P}_{1,(1)}, \mathcal{P}_{2,(1)}, \dots, \mathcal{P}_{H,(1)});
19 return \Sigma_H;
```

AutoML: Boosting Ensemble


```
Algorithm 4: The Boosting Ensemble
     Input: Dataset \mathcal{D} = (\mathcal{D}_{train}, \mathcal{D}_{valid}); Search space \mathcal{U}; Time budget T; Evaluation
                    budget G; Search algorithm Samp; Size of the ensemble H
     Output: Ensemble \Sigma_M
  1 Initialization: \mathbf{y}_{train,0} = \mathbf{y}_{train}; \mathbf{y}_{valid,0} = \mathbf{y}_{valid}; \hat{\mathbf{y}}_{train,0} = 0; \hat{\mathbf{y}}_{valid,0} = 0;
 2 for h \leftarrow 1 to H do
         k = 0;
                                                                                                                  /* Round of evaluation */
           t^{re} = T//H;
                                                                                                             /* Remaining time budget */
            q^{re} = G//H;
                                                                                               /* Remaining evaluation budget */
            \mathbf{y}_{train,h} = \mathbf{y}_{train,h-1} - \hat{\mathbf{y}}_{train,h-1}; \ \mathbf{y}_{valid,h} = \mathbf{y}_{valid,h-1} - \hat{\mathbf{y}}_{valid,h-1};
           \mathcal{D}_h = ((\mathbf{X}_{train}, \mathbf{y}_{train,h}), (\mathbf{X}_{valid}, \mathbf{y}_{valid,h}));
            while t^{re} > 0 and q^{re} > 0 do
                  t^{start} = CurrentTime;
                 (E^{(k)},\lambda_E^{(k)}),(I^{(k)},\lambda_I^{(k)}),(B^{(k)},\lambda_B^{(k)}),(S^{(k)},\lambda_S^{(k)}),(F^{(k)},\lambda_F^{(k)}),(M^{(k)},\lambda_M^{(k)}) =
                 \mathcal{P}_{h,k} = M_{\lambda_{M}^{(k)}}^{(k)} \circ F_{\lambda_{F}^{(k)}}^{(k)} \circ S_{\lambda_{S}^{(k)}}^{(k)} \circ B_{\lambda_{B}^{(k)}}^{(k)} \circ I_{\lambda_{I}^{(k)}}^{(k)} \circ E_{\lambda_{E}^{(k)}}^{(k)};
                  L^{eval,(k)} = \overset{\widehat{\mathcal{V}}}{\mathcal{V}}(\mathcal{L}, \overset{\widehat{\mathcal{P}}_{h,k}}{\mathcal{P}_{h,k}}, \mathcal{D}_h);
                   t^{end} = CurrentTime;
                   k = k + 1;
                   t^{re} = t^{re} - (t^{end} - t^{start});
            {\mathcal{P}_{h,(k)}} = sort({\mathcal{P}_{h,k}});
            \hat{\mathbf{y}}_{train,h} = \mathcal{P}_{h,(1)}(\mathbf{X}_{train}); \ \hat{\mathbf{y}}_{valid,h} = \mathcal{P}_{h,(1)}(\mathbf{X}_{valid});
21 \Sigma_H = \Sigma_H(\mathcal{P}_{1,(1)}, \mathcal{P}_{2,(1)}, \dots, \mathcal{P}_{H,(1)});
22 return \Sigma_H;
```

Experiments: French Motor Third-Part Liability

G	T/s	runtime/s	Train Deviance	Test Deviance
8	900	807.62	0.3622	0.3689
16	1,800	1,082.21	0.3826	0.3890
32	3,600	2,092.15	0.3156	0.3250
64	7,200	4,417.51	0.3022	0.3122
128	14,400	8,052.91	0.2925	0.3034
256	28,800	12,624.60	0.2779	0.3009
512	57,600	34,036.03	0.2762	0.3020
1024	115,200	63,401.81	0.2539	0.3114

Experiments: Wisconsin Local Government Property Insurance Fund

G	T/s	runtime/s	Train \mathbb{R}^2	Test \mathbb{R}^2
8	900	1202.55	0.2267	0.2151
16	1,800	1,533.87	0.2700	0.2268
32	3,600	1,513.57	0.2373	0.2235
64	7,200	2,891.36	0.2674	0.2255
128	14,400	3,367.43	0.3409	0.2361
256	28,800	$8,\!413.55$	0.3330	0.2360
512	57,600	10,313.03	0.3424	0.2372
1024	115,200	$15,\!282.33$	0.3197	0.2377
2048	230,400	$40,\!856.35$	0.3260	0.2360

Experiments: Automobile claim datasets in Australia

G	T/s	runtime/s	Train AUC	Test AUC
8	900	565.15	0.8681	0.5407
16	1,800	629.83	0.8489	0.6253
32	3,600	$1,\!127.55$	0.6578	0.6754
64	7,200	$2,\!506.17$	0.6560	0.6739
128	14,400	3,749.68	0.6576	0.6754
256	28,800	4,598.22	0.6600	0.6770
512	57,600	9,709.30	0.6602	0.6774
1024	115,200	18,938.53	0.6609	0.6815
2048	230,400	30,951.82	0.6626	0.6831
4096	460,800	79,438.58	0.6627	0.6831

Experiments: Comparison

Data	GLM Results		AutoML		
	Family	Metric	Test loss	\mathbf{G}	Test loss
$\overline{ freMTPL2freq}$	Poisson	Poisson Deviance	0.3595	256	0.3009
	Tweedie	R^2	0.2062	1024	0.2377
		Gini	0.4089		0.4187
LGPIF		${ m ME}$	0.1609		0.0476
		MSE	14.0533		13.4956
		MAE	2.8749		2.8955
$ausprivauto_occ$	Bernoulli	AUC	0.6792	2048	0.6831
$ausprivauto_fre$	Poisson	Poisson Deviance	0.4437	256	0.3668
ausprivauto	Tweedie	RMSE	1,091.6741	1024	1,091.5361

Experiments: Comparison

Data	Actuarial literature			AutoML	
	Source	Metric	Test loss	\mathbf{G}	Test loss
freMTPL2freq	[2]	Poisson Deviance	0.3149	256	0.3009
	[3]	R^2	0.229	1024	0.2377
		Gini	0.414		0.4187
LGPIF		${ m ME}$	0.048		0.0476
		MSE	13.651		13.4956
		MAE	2.883		2.8955
$\overline{\ \ ausprivauto_occ}$	[4]	AUC	0.660	2048	0.6831

[2]Wuthrich, M. V. (2019). From generalized linear models to neural networks, and back. Technical report, Department of Mathematics, ETH Zurich.

[3] Quan, Z. and Valdez, E. A. (2018). Predictive analytics of insurance claims using multivariate decision trees. *Dependence Modeling*, 6(1):377–407.

[4] Si, J., He, H., Zhang, J., and Cao, X. (2022a). Automobile insurance claim occurrence prediction model based on ensemble learning. *Applied Stochastic Models in Business and Industry*, 38(6):1099–1112.

Conclusion

- Provide a workable pipeline
 - With focus on insurance imbalanced datasets
- Acceptable performance and efficiency
- Flexible framework for modification
- Provides prototype and insights for further improvement

Thank you! Q&A