

Hybrid Tree-based Interpretable Pricing

Panyi Dong

University of Illinois Urbana-Champaign

2025-08-01

Synopsis

- Background & Motivation
- Methodology
- **Empirical Experiments**
- Conclusion

Background

Fig. 1: Classification and Regression Tree (CART)

- CART (Breiman et al., 1984)
 - Intuitive data splits
 - Easy for interpretation
 - Address data heterogeneity
 - Homogeneous leaf nodes
 - Mean as predictions
- However
 - Insurance claims are
 - Compound frequency-severity
 - Classification + Regression

Background

Fig. 2: HybridTree (HT)

- HybridTree (Quan et al., 2023)
 - Compound tree structure to capture insurance claims distribution
 - Classification tree: Frequency
 - Identification of risk
 - Regression leaf nodes: Severity
 - Quantification of reported claims
 - Zeroes for excess Zeros
 - Mean for not data-sufficient nodes
 - Linear regression for homogeneous nodes

Motivation

- Modification of HT
 - o Previous HT
 - Fixed classification tree
 - Limited growing/pruning measures
 - Solutions
 - New implementation of HT from scratch
 - Introduces classification- and regression-based measures
 - Risk loading as post hoc modification

Motivation

Fig. 3: Ten deep HTs from a HT ensemble

Motivation

- Interpretable HT pricing tool
 - Trees are supposed to be easily interpretable
 - Modern insurance datasets are much larger
 - Deep and large ensemble trees are almost impossible to interpret
 - To generate interpretable pricing tools for actuaries
 - **Extract** a few **critical nodes** from large ensembles
 - Reconstruct a simple pricing model with competitive predictive capability

Related Work

- Modification of CART
 - Weighted CART (wCART, Lopez et al, 2019)
 - Reweight observations with Kaplan–Meier (KM) weights
 - Novel splitting measure (Hwang et al, 2020)
 - Purity measure-inspired criteria with tunable hyperparameters
 - Imbalanced loss fucntions (Hu et al, 2022)
 - Modifies CART splitting criteria for imbalanced learning
 - Expectation-Boosting (EB, Hou et al, 2025)
 - Utilizes Gradient Boosting Decision Tree (GBDT) to estimate mixture models

Related Work

- Risk loading
 - An "ancient" idea to cover expenses or profits by adjusting risk premiums
 - Borch, K., 1960; Buhlmann, H., 1970; Benjamin, S., 1986.
- Rule extraction from tree-based models
 - Stable and Interpretable RUle Set (SIRUS, Benard et al, 2021)
 - Extract decision rules from tree models and reconstruct a simple linear model
 - Reformulate binary classification (Verwer and Zhang, 2019)
 - As rule-based linear programming optimization to increase modeling efficiency
 - Meta Rule (Li et al, 2023)
 - Existence of common decision paths in tree-based models

Methodology: Modified HT

- HT growing
 - Classification- and regression-based impurity
- HT pruning
 - Retain CART minimal cost-complexity pruning
 - More pruning cost functions
- Leaf node regression models
 - Generalized Linear Model (GLM) + GLM Net + Probability-based GLM/GLM Net

Methodology: Risk loading

- Risk loading post hoc modification
 - Introduces risk loading to leaf nodes to modify predictions

$${\hat{y}}_s = f_i(\mathbf{x}_s) + r_i \sqrt{rac{\sum_{m:m \in \mathcal{M}_i} (y_m - {ar{y}}_i)^2}{|\mathcal{M}_i|}}$$

where r_i is some risk loading factors at leaf node i, $f_i(\mathbf{x}_s)$ is the original model predictions, squared root part is the standard deviation at leaf node i.

- Risk loading factors can be difficult to quantify
 - Experts adjust these factors based on experience
 - Data-based optimization: Maximize Gini index while retaining Percentage Error (PE)

Fig. 3: Example of a decision tree

Definition 1 (Extended child node). A node T^{EC} is considered an extended child of node T if it resides within the subtree rooted at T, such that the removal of node T would also eliminate T^{EC} from the tree.

Example 1

- Node 2 is a (EC) child node of Node 1
- Node 5/6 are EC child nodes of Node 2
- Node 5/6 are NOT (EC) child node of Node 3

Fig. 3: Example of a decision tree

Definition 2 (Decision path). A series of tree nodes $\{T^{(1)},T^{(2)},\ldots,T^{(Q)}\}$ form a Q-layer decision path $h^{(Q)}$ in the hybrid tree if for every $q=1,2,\ldots,Q-1,T^{(q+1)}$ is a extended-child node of $T^{(q)}$. Furthermore, the decision path can be expressed as $h^{(Q)}=T^{(1)}\cap T^{(2)}\cap\ldots\cap T^{(Q)}$ where $T^{(q)}$ is the node at layer q.

Example 2

- Node 1-2-4 forms a decision path
- Node 2-4-6 forms a decision path
- Node 3-2-4 do NOT form decision path

Definition 3 (Pricing path). For S HTs, a pricing path h is a decision path that exists in at least $\lceil bS \rceil$ HTs, for some practical occurrence probability $b \in (0,1)$.

- Commonly observed pricing paths represent
 - Critical data splitting rules
 - Crucial pricing decisions
- Extract these pricing paths and reconstruct a simplified pricing model
 - Transparent and interpretable insurance pricing

- Pricing path requires multiple trees
 - Bagging ensemble
 - Multiple HT -> heterogeneity
 - Each trained on subset -> preserve critical decision nodes
- Directly extracting pricing paths is computational expensive
 - Exhaustive search is almost impossible
 - First translate into extraction of *sharing node*

Definition 4 (Sharing node). A sharing node T_s is a non-terminal HT node that exists in at least $\lceil bS \rceil$ HTs, for some practical occurrence probability $b \in (0,1)$.

Fig. 4: Example of pricing path extraction

- To extract longest possible pricing paths
 - \circ Start with L (number of sharing nodes)
 - Permutate sharing nodes to form candidate pricing paths
 - Validate the candidates
 - \circ If
 - Found, return those pricing paths
 - Not, reduce length by 1 and repeat
 - Length is 1, return sharing nodes

- Benefits
 - \circ Complexity of extraction $O(2^L)$
 - Number of sharing nodes L is usually small (~3-6)
 - Order of nodes is critical in pricing paths
 - Permutation ignores the order
 - Validation inherently encodes the hierarchical structure
 - Extracted pricing paths are usually straightforward
 - Easy to identify and categorize by actuaries

- With the extracted pricing paths
 - Reconstrucut a insurance pricing model with competitive performance
- As an intuitive solution
 - Replace the data splitting space using pricing paths
 - All possible splits -> A few feature + threshold pairs
 - Resulting model is transparent and interpretable
 - With risk loading, combine the reconstructed tree with risk loading

Empirical Experiments¹: Real-life InsurTech Dataset

- InsurTech-enhanced Dataset
 - Introduced in Quan et al, (2025)
 - Collection of Business Owner's Policy (BOP) policies across 10-year time span
 - Identical pre-processing, data split is adopted
 - Selected business personal property (BP) coverage
 - 137,875 policies in the train set
 - 27,575 policies in the test set
 - 586 Insurance + InsurTech-enhanced features

Results

Model	Dataset	Gini	ME	MAE	Dataset	Gini	ME	MAE
Insurance in-house	train	0.59	-9.68	277.37		0.58	-15.08	270.75
Mean		-0.02	0.00	271.83		0.06	-5.92	265.74
Tweedie GLM		0.68	-0.03	262.64		0.36	-5.67	262.31
LightGBM		0.78	0.23	259.11		0.59	-7.17	262.78
HT		0.68	13.42	246.24		0.41	3.98	251.61
HT + Risk loading		0.69	11.57	245.62		0.54	3.49	249.38
HT ensemble		0.92	27.88	229.00		0.56	3.94	251.58
Rule reconstruction		0.54	8.93	258.96		0.42	1.61	255.30
Rule reconstruction + Risk loading		0.60	8.73	257.50		0.47	1.58	253.46

HT visualization

Fig. 5: HT trained on real-life data

- HT visualization
 - Sharing nodes (>80% in 40 trees)
 - No *length>=2* pricing paths found

Feature: Year_2010; Threshold: 0.50

Feature: Year_2011; Threshold: 0.50

Feature: INS.CLASS.office; Threshold: 0.50

Feature: TERRITORY.b2; Threshold: 0.01

Feature: TERRITORY.c2; Threshold: 0.02

• HT visualization

Fig. 6: Reconstructed HT on real-life data

Conclusion

- HybridTree
 - An alternative of CART to capture compound insurance frequency-severity
 - Modifications allows more flexible tree growing/pruning
 - Risk loading as post hoc modification to serve insurer's expectations
- Rule-based insurance pricing
 - Extract critical decision paths/nodes
 - Reconstruct a transparent and interpretable insurance pricing model

Selected Reference

- B´enard, C., Biau, G., da Veiga, S., and Scornet, E. (2021). Interpretable Random Forests via Rule Extraction. In *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, pages 937–945. PMLR.
- Benjamin, S. (1986). Loadings for Insurance Premiums. *The Geneva Papers on Risk and Insurance*, 11(39):110–125.
- Borch, K. (1960). The safety loading of reinsurance premiums. *Scandinavian Actuarial Journal*, 1960(3-4):163–184.
- Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees.
 Chapman and Hall/CRC, New York.
- Buhlmann, H. (1970). *Mathematical Methods in Risk Theory*. Grundlehren Der Mathematischen Wissenschaft. Springer, Berlin, Heidelberg.

Selected Reference

- Frees, E. W. J., Meyers, G., and Cummings, A. D. (2014). Insurance ratemaking and a gini index. *Journal of Risk and Insurance*, 81(2):335–366.
- Hou, Y., Li, J., and Gao, G. (2025). Insurance loss modeling with gradient tree-boosted mixture models. *Insurance: Mathematics and Economics*, 121:45–62.
- Hu, C., Quan, Z., and Chong, W. F. (2022). Imbalanced learning for insurance using modified loss functions in tree-based models. *Insurance: Mathematics and Economics*, 106:13–32.
- Hwang, S., Yeo, H. G., and Hong, J.-S. (2020). A New Splitting Criterion for Better Interpretable Trees. *IEEE Access*, 8:62762–62774.
- Li, Q., Xie, C., Xu, X., Liu, X., Zhang, C., Li, B., He, B., and Song, D. (2023). Effective and Efficient Federated Tree Learning on Hybrid Data.

Selected Reference

- Lopez, O., Milhaud, X., and Th´erond, P.-E. (2019). A TREE-BASED ALGORITHM ADAPTED TO MICROLEVEL RESERVING AND LONG DEVELOPMENT CLAIMS. *ASTIN Bulletin: The Journal of the IAA*, 49(3):741–762.
- Quan, Z., Hu, C., Dong, P., and Valdez, E. A. (2025). Improving business insurance loss models by leveraging insurtech innovation. *North American Actuarial Journal*, 29(2):247–274.
- Quan, Z., Wang, Z., Gan, G., and Valdez, E. A. (2023). On hybrid tree-based methods for short-term insurance claims. *Probability in the Engineering and Informational Sciences*, 37(2):597–620.
- Verwer, S. and Zhang, Y. (2019). Learning Optimal Classification Trees Using a Binary Linear Program Formulation. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):1625–1632.

Thank you! Q&A

Appendix: Methodology: CART

- **Traditional CART**
 - Best data split = Largest impurity decrease

$$Im(\mathbf{y}) - rac{|\mathcal{M}_L|}{|\mathcal{M}|} Im(\mathbf{y}_L) - rac{|\mathcal{M}_R|}{|\mathcal{M}|} Im(\mathbf{y}_R)$$

- Growing impurity measures

 - $lacksquare Gini ext{ index: } Im_{gini}(\mathbf{y}) = 1 \sum_{k=1}^K p_k^2 \ lacksquare Entropy: Im_{entropy}(\mathbf{y}) = \sum_{k=1}^K p_k \log(p_k)$

where
$$p_k = rac{1}{|\mathcal{M}|} \sum_{m=1}^{|\mathcal{M}|} 1_{y_m=k}$$
 for \mathcal{M} observations at the leaf node.

Appendix: Methodology: Modified HT

- Classification-based impurity
 - \circ Mis-classifications rate: $Im_{mis}(\mathbf{y}) = rac{\sum_{m=1}^{|\mathcal{M}|} 1_{y_m
 eq \hat{y}}}{|\mathcal{M}|}$
 - Balanced mis-classifications rate: $Im_{bal_mis}(\mathbf{y}) = rac{1}{K} \sum_{k=1}^K rac{\sum_{m=1}^{|\mathcal{M}|} 1_{y_m
 eq \hat{y}} 1_{y_m = k}}{\sum_{m=1}^{|\mathcal{M}|} 1_{y_m = k}}$
- Regression-based impurity²

 - \circ Mean Absolute Error (MAE): $Im_{mae}(\mathbf{y}) = rac{1}{|\mathcal{M}|} \sum_{m=1}^{|\mathcal{M}|} |y_m \hat{y}|$ \circ Mean Squared Error (MSE): $Im_{mse}(\mathbf{y}) = rac{1}{|\mathcal{M}|} \sum_{m=1}^{|\mathcal{M}|} (y_m \hat{y})^2$

[2] Regression-based impurity measures may be misaligned with the classification-oriented goal of identifying risk segments. However, they are retained to provide users with greater flexibility when applying HTs to regression tasks.

Appendix: Methodology: Modified HT

- Pruning
 - Minimal cost-complexity pruning

$$CC(I) = C(I) + \alpha |I|$$

where C is cost function, lpha denotes complexity parameter (cp) for a tree with I leaf nodes.

- Pruning criteria: Mis-classification, MAE, and MSE
- Retain CART pruning process

Appendix: Methodology: Modified HT

- Leaf node regression models
 - Generalized Linear Regression (GLM)
 - Gaussian family (simple linear regression) sufficient in most senarios
 - GLM net
 - High dimensional data
 - Probability-based GLM/GLM net
 - Two-step model
 - Probability of claims + Expected claims

Algorithm summary

```
Algorithm 1: Pricing path extraction
   Input: S hybrid trees E = \{E_1, E_2, ..., E_S\}; Occurrence threshold b
   Output: Extracted decision paths/nodes H
 1 H = \{\};
 2 T_S \leftarrow GetSharingNode(E);
                /* Get sharing decision nodes that appears in at least \lceil bS \rceil trees */
   L = length(T_S);
                                                         /* Length of all sharing nodes */
 3 l = L; while l > 1 do
      if l = 1 then
         return T_S;
      end
      for h \in Comb(L, l) do
                  /* Loop through all combinations of sharing nodes with length l */;
         if h is a valid path in [bS] trees then
             H \leftarrow h;
          end
10
      \mathbf{end}
11
      l = l - 1;
13 end
14 return H;
```


- ullet Data generation $\mathcal{D}=(\mathbf{X},\mathbf{y})$
 - \circ Features: $\mathbf{X} = [\mathbf{X}_{cat}, \mathbf{X}_{con}]$ for 20 categorical variables \mathbf{X}_{cat} and 20 continuous variables \mathbf{X}_{con} .
 - lacktriangle Categorical variables \mathbf{X}_{cat} : i.i.d. from (-3,-2,1,4) with equal probability
 - lacktriangle Continuous variables $f X_{con}$: multi-variate normal with mean of f 0 and identity covariance matrix
 - \circ Response variable: $\mathbf{y}=(1+0.25|\delta|)\mathbf{y}_{true}, \ \mathrm{if}\ \mathbf{y}_{true}>0; \ 0, \mathrm{otherwise}.$
 - ullet $\delta \sim \mathcal{N}(0,1)$ is Gaussian noise

- ullet Data generation $\mathcal{D} = (\mathbf{X}, \mathbf{y})$
 - $\circ~$ True response variable: $\mathbf{y}_{true} \sim Gam(|Poi(\hat{ au})|, \hat{\mu}^{0.5})$
 - Tweedie distribution with power of 1.5 and dispersion of 2

$$ullet$$
 $\hat{ au}=rac{ au}{ar{ au}}$ and $\hat{\mu}=1000rac{\mu}{ar{\mu}}$

- lacksquare Poisson component: $au = e^{(-0.1 + \mathbf{X}_{con} eta_{Poi} + \mathbf{X}_{cat} eta_{Poi})/2}$
- lacksquare Gamma component: $\mu=e^{6+\mathbf{X}_{con}eta_{Gam}+\mathbf{X}_{cat}eta_{Gam}}$
- lacktriangle Coefficients of Poisson component: $eta_{Poi,j} = -0.4 + 0.05 j$
- lacktriangle Coefficients of Gamma component: $eta_{Gam,j} = -0.08 + 0.01j$

Results

Model	Dataset	Gini	ME	MAE	Dataset	Gini	ME	MAE
Mean	train	-0.03	0.00	89.56	test	0.12	0.61	90.33
Tweedie GLM		0.91	-0.07	39.42		0.91	-1.13	41.28
HT		0.77	-10.25	62.86		0.77	-11.92	71.89
HT + Risk loading		0.79	-0.20	58.41		0.79	-1.10	65.95
HT ensemble		0.88	-6.22	57.90		0.86	-5.24	66.43
Rule reconstruction		0.52	7.69	57.56		0.62	9.13	59.57
Rule reconstruction + Risk loading		0.55	0.48	62.51		0.64	4.48	59.65

HT visualization

Fig. 7: HT trained on simulation data

HT visualization

Fig. 8: First HT in the ensemble on simulation data

- HT visualization
 - Sharing nodes (>=60% in 100 HTs)

Feature: $Cat_0.40$; Threshold: -0.5Feature: $Cat_0.45$; Threshold: -0.5Feature: $Cat_0.45$; Threshold: 2.50Feature: $Cat_0.50$; Threshold: -0.5Feature: $Cat_0.50$; Threshold: 2.50Feature: $Cat_0.55$; Threshold: -0.5Feature: $Cat_0.55$; Threshold: 2.50Feature: $Cat_0.60$; Threshold: 2.50

- HT visualization
 - Extracted pricing paths

Feature: Cat_0.45; Threshold: -0.5 --- Feature: Cat_0.60; Threshold: 2.50

Feature: Cat_0.50; Threshold: -0.5 --- Feature: Cat_0.60; Threshold: 2.50

Feature: Cat_0.50; Threshold: 2.50 --- Feature: Cat_0.60; Threshold: 2.50

Feature: Cat_0.55; Threshold: -0.5 --- Feature: Cat_0.60; Threshold: 2.50

Feature: Cat_0.55; Threshold: 2.50 --- Feature: Cat_0.60; Threshold: 2.50

HT visualization

Fig. 9: Reconstructed HT on simulation data

Appendix: Notation

Notation	Description			
Im	impurity measure			
(\mathbf{X},\mathbf{y})	pair of feature matrix and response vector			
${\cal M}$	partition index of leaf node			
p_k	the probability for each class $oldsymbol{k}$			
f	leaf node regression model			
r	risk-loading factor			
T	decision node			
$h^{(Q)}$	Q-layer decision path			
b	occurance probability			
L	maximum length of decision paths			
$\underline{\hspace{1cm}}^{E}$	hybrid tree model			

Appendix: Evaluation Metrics

$$Gini(y,\hat{y}) = 1 - rac{2}{N-1} \Biggl(N - rac{\sum_{n=1}^{N} n y_{[n]}}{\sum_{n=1}^{N} y_{[n]}} \Biggr) .$$

$$ME(y,\hat{y}) = rac{1}{N} \sum_{n=1}^N (y_n - \hat{y}_n)$$

$$MAE(y,\hat{y}) = rac{1}{N} \sum_{n=1}^{N} |y_n - \hat{y}_n|$$