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Fig. 1: Classification and Regression Tree (CART)

CART (Breiman et al., 1984)

Intuitive data splits

Easy for interpretation

Address data heterogeneity

Homogeneous leaf nodes

Mean as predictions

However

Insurance claims are

Compound frequency-severity

Classification + Regression

Background
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Fig. 2: HybridTree (HT)

HybridTree (Quan et al., 2023)

Compound tree structure to capture

insurance claims distribution

Classification tree: Frequency

Identification of risk

Regression leaf nodes: Severity

Quantification of reported claims

Zeroes for excess Zeros

Mean for not data-sufficient nodes

Linear regression for homogeneous

nodes

Background
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Motivation

Modification of HT

Previous HT

Fixed classification tree

Limited growing/pruning measures

Solutions

New implementation of HT from scratch

Introduces classification- and regression-based measures

Risk loading as post hoc modification
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Motivation

Fig. 3: Ten deep HTs from a HT ensemble
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Motivation

Interpretable HT pricing tool

Trees are supposed to be easily interpretable

Modern insurance datasets are much larger

Deep and large ensemble trees are almost impossible to interpret

To generate interpretable pricing tools for actuaries

Extract a few critical nodes from large ensembles

Reconstruct a simple pricing model with competitive predictive capability
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Related Work

Modification of CART

Weighted CART (wCART, Lopez et al, 2019)

Reweight observations with Kaplan–Meier (KM) weights

Novel splitting measure (Hwang et al, 2020)

Purity measure-inspired criteria with tunable hyperparameters

Imbalanced loss fucntions (Hu et al, 2022)

Modifies CART splitting criteria for imbalanced learning

Expectation-Boosting (EB, Hou et al, 2025)

Utilizes Gradient Boosting Decision Tree (GBDT) to estimate mixture models
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Related Work

Risk loading

An "ancient" idea to cover expenses or profits by adjusting risk premiums

Borch, K., 1960; Buhlmann, H., 1970; Benjamin, S., 1986.

Rule extraction from tree-based models

Stable and Interpretable RUle Set (SIRUS, Benard et al, 2021)

Extract decision rules from tree models and reconstruct a simple linear model

Reformulate binary classification (Verwer and Zhang, 2019)

As rule-based linear programming optimization to increase modeling efficiency

Meta Rule (Li et al, 2023)

Existence of common decision paths in tree-based models
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Methodology: Modified HT

HT growing

Classification- and regression-based impurity

HT pruning

Retain CART minimal cost-complexity pruning

More pruning cost functions

Leaf node regression models

Generalized Linear Model (GLM) + GLM Net + Probability-based GLM/GLM Net
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Methodology: Risk loading

Risk loading post hoc modification

Introduces risk loading to leaf nodes to modify predictions

where  is some risk loading factors at leaf node ,  is the original model predictions,

squared root part is the standard deviation at leaf node .

Risk loading factors can be difficult to quantify

Experts adjust these factors based on experience

Data-based optimization: Maximize Gini index while retaining Percentage Error (PE)

ŷs = fi(xs) + ri√
∑m:m∈Mi

(ym − ȳ i)
2

|Mi|

ri i fi(xs)

i

11



Fig. 3: Example of a decision tree

Definition 1 (Extended child node). A node 

is considered an extended child of node  if it

resides within the subtree rooted at , such that

the removal of node  would also eliminate 

from the tree.

Example 1

Node 2 is a (EC) child node of Node 1

Node 5/6 are EC child nodes of Node 2

Node 5/6 are NOT (EC) child node of Node 3

Methodology: Rule Extraction and Reconstruction

T EC

T
T

T T EC
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Fig. 3: Example of a decision tree

Definition 2 (Decision path). A series of tree

nodes  form a -layer

decision path  in the hybrid tree if for every

,  is a extended-child

node of . Furthermore, the decision path can

be expressed as 

where  is the node at layer .

Example 2

Node 1-2-4 forms a decision path

Node 2-4-6 forms a decision path

Node 3-2-4 do NOT form decision path

Methodology: Rule Extraction and Reconstruction

{T (1), T (2), . . . , T (Q)} Q

h(Q)

q = 1, 2, . . . , Q − 1 T (q+1)

T (q)

h(Q) = T (1) ∩ T (2)∩. . . ∩T (Q)

T (q) q
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Methodology: Rule Extraction and Reconstruction

Definition 3 (Pricing path). For  HTs, a pricing path  is a decision path that exists in at least  HTs,

for some practical occurrence probability .

Commonly observed pricing paths represent

Critical data splitting rules

Crucial pricing decisions

Extract these pricing paths and reconstruct a simplified pricing model

Transparent and interpretable insurance pricing

S h ⌈bS⌉
b ∈ (0, 1)
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Methodology: Rule Extraction and Reconstruction

Pricing path requires multiple trees

Bagging ensemble

Multiple HT -> heterogeneity

Each trained on subset -> preserve critical decision nodes

Directly extracting pricing paths is computational expensive

Exhaustive search is almost impossible

First translate into extraction of sharing node

Definition 4 (Sharing node). A sharing node  is a non-terminal HT node that exists in at least 

HTs, for some practical occurrence probability .

Ts ⌈bS⌉
b ∈ (0, 1)
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Fig. 4: Example of pricing path extraction

To extract longest possible pricing paths

Start with  (number of sharing nodes)

Permutate sharing nodes to form

candidate pricing paths

Validate the candidates

If

Found, return those pricing paths

Not, reduce length by 1 and repeat

Length is 1, return sharing nodes

Methodology: Rule Extraction and Reconstruction

L
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Methodology: Rule Extraction and Reconstruction

Benefits

Complexity of extraction 

Number of sharing nodes  is usually small (~3-6)

Order of nodes is critical in pricing paths

Permutation ignores the order

Validation inherently encodes the hierarchical structure

Extracted pricing paths are usually straightforward

Easy to identify and categorize by actuaries

O(2L)

L
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Methodology: Rule Extraction and Reconstruction

With the extracted pricing paths

Reconstrucut a insurance pricing model with competitive performance

As an intuitive solution

Replace the data splitting space using pricing paths

All possible splits -> A few feature + threshold pairs

Resulting model is transparent and interpretable

With risk loading, combine the reconstructed tree with risk loading
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Empirical Experiments1: Real-life InsurTech Dataset

InsurTech-enhanced Dataset

Introduced in Quan et al, (2025)

Collection of Business Owner's Policy (BOP) policies across 10-year time span

Identical pre-processing, data split is adopted

Selected business personal property (BP) coverage

137,875 policies in the train set

27,575 policies in the test set

586 Insurance + InsurTech-enhanced features

[1] HT, Rule extraction and reconstruction: https://github.com/PanyiDong/HybridTree
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Empirical Experiments: Real-life InsurTech Dataset

Results

Model Dataset Gini ME MAE Dataset Gini ME MAE

Insurance in-house

train

0.59 -9.68 277.37

test

0.58 -15.08 270.75

Mean -0.02 0.00 271.83 0.06 -5.92 265.74

Tweedie GLM 0.68 -0.03 262.64 0.36 -5.67 262.31

LightGBM 0.78 0.23 259.11 0.59 -7.17 262.78

HT 0.68 13.42 246.24 0.41 3.98 251.61

HT + Risk loading 0.69 11.57 245.62 0.54 3.49 249.38

HT ensemble 0.92 27.88 229.00 0.56 3.94 251.58

Rule reconstruction 0.54 8.93 258.96 0.42 1.61 255.30

Rule reconstruction + Risk loading 0.60 8.73 257.50 0.47 1.58 253.46
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Empirical Experiments: Real-life InsurTech Dataset

HT visualization

Fig. 5: HT trained on real-life data
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Empirical Experiments: Real-life InsurTech Dataset

HT visualization

Sharing nodes (>80% in 40 trees)

No length>=2 pricing paths found

Feature: Year_2010; Threshold: 0.50

Feature: Year_2011; Threshold: 0.50

Feature: INS.CLASS.office; Threshold: 0.50

Feature: TERRITORY.b2; Threshold: 0.01

Feature: TERRITORY.c2; Threshold: 0.02
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Empirical Experiments: Real-life InsurTech Dataset

HT visualization

Fig. 6: Reconstructed HT on real-life data
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Conclusion

HybridTree

An alternative of CART to capture compound insurance frequency-severity

Modifications allows more flexible tree growing/pruning

Risk loading as post hoc modification to serve insurer's expectations

Rule-based insurance pricing

Extract critical decision paths/nodes

Reconstruct a transparent and interpretable insurance pricing model
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Thank you! Q&A
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Appendix: Methodology: CART

Traditional CART

Best data split = Largest impurity decrease

Growing impurity measures

Gini index: 

Entropy: 

where  for  observations at the leaf node.

Im(y) − Im(yL) − Im(yR)
|ML|

|M|

|MR|

|M|

Imgini(y) = 1 −∑
K

k=1 p2
k

Imentropy(y) = −∑K
k=1 pk log(pk)

pk = ∑
|M|
m=1 1ym=k

1

|M|
M
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Appendix: Methodology: Modified HT

Classification-based impurity

Mis-classifications rate: 

Balanced mis-classifications rate: 

Regression-based impurity2

Mean Absolute Error (MAE): 

Mean Squared Error (MSE): 

Immis(y) =
∑

|M|
m=1 1ym≠ŷ

|M|

Imbal_mis(y) = ∑
K

k=1

1

K

∑
|M|

m=1 1ym≠ŷ 1ym=k

∑
|M|
m=1 1ym=k

Immae(y) = ∑
|M|
m=1 |ym − ŷ |

1

|M|

Immse(y) = ∑
|M|
m=1(ym − ŷ)21

|M|

[2] Regression-based impurity measures may be misaligned with the classification-oriented goal of identifying risk segments. However, they are retained to provide users with

greater flexibility when applying HTs to regression tasks.
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Appendix: Methodology: Modified HT

Pruning

Minimal cost-complexity pruning

where  is cost function,  denotes complexity parameter (cp) for a tree with  leaf nodes.

Pruning criteria: Mis-classification, MAE, and MSE

Retain CART pruning process

CC(I) = C(I) + α|I|

C α I
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Appendix: Methodology: Modified HT

Leaf node regression models

Generalized Linear Regression (GLM)

Gaussian family (simple linear regression) sufficient in most senarios

GLM net

High dimensional data

Probability-based GLM/GLM net

Two-step model

Probability of claims + Expected claims
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Appendix: Methodology: Rule Extraction and Reconstruction

Algorithm summary
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Appendix: Empirical Experiments: Simulated Tweedie Dataset

Data generation 

Features:  for 20 categorical variables  and 20 continuous variables .

Categorical variables : i.i.d. from  with equal probability

Continuous variables : multi-variate normal with mean of  and identity covariance

matrix

Response variable: ; .

 is Gaussian noise

D = (X, y)

X = [Xcat, Xcon] Xcat Xcon

Xcat (−3, −2, 1, 4)

Xcon 0

y = (1 + 0.25|δ|)ytrue,  if ytrue > 0 0, otherwise

δ ∼ N (0, 1)
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Appendix: Empirical Experiments: Simulated Tweedie Dataset

Data generation 

True response variable: 

Tweedie distribution with power of 1.5 and dispersion of 2

 and 

Poisson component: 

Gamma component: 

Coefficients of Poisson component: 

Coefficients of Gamma component: 

D = (X, y)

ytrue ∼ Gam(|Poi(τ̂ )|, μ̂
0.5)

τ̂ =
τ

τ̄
μ̂ = 1000

μ

μ̄

τ = e(−0.1+XconβPoi+XcatβPoi)/2

μ = e6+XconβGam+XcatβGam

βPoi,j = −0.4 + 0.05j

βGam,j = −0.08 + 0.01j

35



Appendix: Empirical Experiments: Simulated Tweedie Dataset

Results

Model Dataset Gini ME MAE Dataset Gini ME MAE

Mean

train

-0.03 0.00 89.56

test

0.12 0.61 90.33

Tweedie GLM 0.91 -0.07 39.42 0.91 -1.13 41.28

HT 0.77 -10.25 62.86 0.77 -11.92 71.89

HT + Risk loading 0.79 -0.20 58.41 0.79 -1.10 65.95

HT ensemble 0.88 -6.22 57.90 0.86 -5.24 66.43

Rule reconstruction 0.52 7.69 57.56 0.62 9.13 59.57

Rule reconstruction + Risk loading 0.55 0.48 62.51 0.64 4.48 59.65

36



Appendix: Empirical Experiments: Simulated Tweedie Dataset

HT visualization

Fig. 7: HT trained on simulation data
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Appendix: Empirical Experiments: Simulated Tweedie Dataset

HT visualization

Fig. 8: First HT in the ensemble on simulation data
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Appendix: Empirical Experiments: Simulated Tweedie Dataset

HT visualization

Sharing nodes (>=60% in 100 HTs)

Feature: Cat_0.40; Threshold: -0.5

Feature: Cat_0.45; Threshold: -0.5

Feature: Cat_0.45; Threshold: 2.50

Feature: Cat_0.50; Threshold: -0.5

Feature: Cat_0.50; Threshold: 2.50

Feature: Cat_0.55; Threshold: -0.5

Feature: Cat_0.55; Threshold: 2.50

Feature: Cat_0.60; Threshold: 2.50
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Appendix: Empirical Experiments: Simulated Tweedie Dataset

HT visualization

Extracted pricing paths

Feature: Cat_0.45; Threshold: -0.5 --- Feature: Cat_0.60; Threshold: 2.50

Feature: Cat_0.50; Threshold: -0.5 --- Feature: Cat_0.60; Threshold: 2.50

Feature: Cat_0.50; Threshold: 2.50 --- Feature: Cat_0.60; Threshold: 2.50

Feature: Cat_0.55; Threshold: -0.5 --- Feature: Cat_0.60; Threshold: 2.50

Feature: Cat_0.55; Threshold: 2.50 --- Feature: Cat_0.60; Threshold: 2.50
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Appendix: Empirical Experiments: Simulated Tweedie Dataset

HT visualization

Fig. 9: Reconstructed HT on simulation data
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Appendix: Notation

Notation Description

impurity measure

pair of feature matrix and response vector

partition index of leaf node

the probability for each class 

leaf node regression model

risk-loading factor

decision node

-layer decision path

occurance probability

maximum length of decision paths

hybrid tree model

Im

(X, y)

M

pk k

f

r

T

h(Q) Q

b

L

E
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Appendix: Evaluation Metrics

Gini(y, ŷ) = 1 − (N − )
2

N − 1

∑
N

n=1 ny[n]

∑
N

n=1 y[n]

ME(y, ŷ) = ∑
N

n=1(yn − ŷn)
1

N

MAE(y, ŷ) = ∑
N

n=1 |yn − ŷn|
1

N
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